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Abstract. This papetinvestigates an information-theoretic design principle, in-
tended to support an evolution of a memory structure fitting a specificteglec
pressure: associative information transfer through the structuegpibiposed cri-
teria measure how much does associativity in memory add to the information
transfer in terms of precision, recall and effectiveness. The stisdyirtroduces

a conjectural analogy between memory retrieval and self-replicatiitin iNA

as a partially-associative memory containing relevant information. DblZod-
ing by a complicated protein machinery (“cues” or "keys”) may cquogsl to

an associative recall: i.e., a replicated offspring is an associatieebfed proto-
type. The proposed information-theoretic criteria intend to formalize tiemof
information transfer involved in self-replication, and enable bio-inspitesign

of more effective memory structures.

1 Introduction

Bio-inspired models have been suggested and used in maay aféJnconventional
Computing: parallel processing such as Cellular Autom@ts) @nd DNA computation;
distributed storage and transmission: e.g., neural n&svand associative memory;
search and optimization: e.g., genetic algorithms and alohg optimization (ACO).
New metaphors are discovered and applied at an increasggy paproving compu-
tational models in terms of robustness, adaptivity andagiiity. However, there is a
certain lack of a unifying methodology, or at least a set dflig principles, underly-
ing many recent developments. This is unsatisfactory nigtfoom a methodological,
but also from a pragmatic point of view: if some generic piphes are not utilized then
specific solutions are likely to be suboptimal.

Existence of such core principles may be supported by ameditsen that most of
the bio-inspired models listed above do not fit into a palicaategory of conventional
computing (memory, communication, processing), but cojple multiple aspects. For
instance, CA were shown by Langton [23] to support, undetageiconditions the
edge of chads three basic operations of information storage, transios and mod-
ification, through static, propagating and interactingictnres blinkers gliders, col-
lisiong). ACO algorithms also combine distributed memory, distréal transmission

! This paper extends preliminary studies and results reported earlier [34]



and distributed search, employing stigmergy — the procgsghich multiple ant-like
agents indirectly interact through changes in their emritent caused by pheromone
deposits [7, 8] — and resulting in emergence of optimal sohst In other words,
these fundamental aspects of dealing with information ased together within these
bio-inspired approaches, making them less brittle and rscaable than conventional
systems. One compelling explanation is that the motivdiinfpgical systems (ranging
from cellular tissues to ant colonies) co-evolved the catmgucomponents rather than
assemble the overall architecture out of separately dedigarts [15, 26].

The main question then becomes what are the core princhdégter-relate mem-
ory, communication, and processing in evolvable componali systems? Answering
this question from an information-theoretic viewpoint nadso improve comparability
of different bio-inspired approaches. In this paper, wgpgee an information-theoretic
design principle, intended to support an evolution of a mgnstructure fitting a spe-
cific selection pressure: associative information tran$feugh the structure. In doing
S0 we minimize architectural assumptions about memory @cgssor structures, hop-
ing instead that such dependencies emerge as a result gbtihgzation of the infor-
mation processing dynamics. Our preliminary studies, nteplchere, indicate that the
proposed principle is capable of clearly identifying thega and information dynam-
ics of possible memory structures in a very general sensdliag design of optimal
memory.

The following Section points out some relevant backgrousdiemal on unconven-
tional memory organization, as well as intrinsic informatitheoretic fithess criteria
used in evolvable computational systems. Section 3 descilie proposed measure,
followed by experimental results (Section 4) and conclsiSection 5).

2 Background and Motivation

Moskowitz and Jousselin [27] have shown that, in a genegalahic sense, the nature
of the operations carried out by a computer processor dgtielermine the structure
of the computer memory. In particular, they highlighted itiigden group structure of
the address space, and pointed out that “when the integéicedidw is used to ma-
nipulate addresses, this space is a cyclic group, and meisiegen as a linear array”.
When another composition law is used (e.g., a non-commatatidress composition),
a hypercubic memory structure fits more, greatly reducingmlexity of computations.
Another related concept is associative or content-adedasemory: a memory or-
ganization in which the memory is accessed by its conteherahan an explicit ad-
dress. Reference clues or keys are “associated” with acteiaory contents until a de-
sirable match (or set of matches) is found. A well-known eglnis a self-organizing
map (SOM or Kohonen network). It can be interpreted as arcagse memory which
encodes the input patterns within the nodes of the netwbik ifeural layer), in the
form of weight (codebook) vectors of the same dimension atdre as the input pat-
terns [22]. When a partial or corrupted pattern of data (amgnsue) is presented in
the form of a key input-vector, the rest of the pattern (memiz associated with it. A
characteristic of SOM-based associative memory is its@egfinizing ordering: neigh-
boring nodes encode similar codebook vectors, presereipgidgy: neurons that are
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closer in the neural layer tend to respond to inputs that x®ecin the input space.
A related approach is advocated by Kanerva [16, 17]: a Sdaistebuted Memory
(SDM) which is a content addressable, associative memaohntgue relying on close
memory items clustered together: while perceived datasepadistribute themselves
over multiple storage locations, the outcome is a fusiomigfdistribution. In the auto-
associative version of SDM the memory contents and theiresdées are from the same
space and may be used alternatively. Another well-knowmgka of auto-associative
memory reproducing its input pattern as output is the Hagfielural network [14].

Importance of memory access is discussed by Goertzel [1®), pursues “not a
model of how memories are physically stored in the brain gmdnere else, but rather
a model of how memory access must work, of how the time requor@ccess different
memories in different situations must vary”. This pursai ltowards astructurally
associative memor{STRAM), based on the idea that “if is more easily accessible
thany, those things which are similar toshould in general be more easily accessible
than those things which are similar ¢80 [10]. Goertzel sketched a way of mapping
a weighted graph describing STRAM to a physical membfyby assigning to each
pair of elementgx, y) stored byM a distanceD, (x,y) measuring the difficulty of
locatingz in memory given thay has very recently been located. It was suggested that
the distanceD,,(z,y) is approximated as a number of links along the shortest path
between the graph nodes corresponding smdy.

It is worth pointing out that our approach does not intendraspnt just a new mea-
sure of associativity or information transfer involved irmory operations, but rather
identify an information-theoretic principle contribugino a general methodology. Such
a methodology may go beyond computational aspects, ingusinsing, actuation, and
networking in distributed systems, co-evolving under iiplét design/selection pres-
sures.

Typically, evolutionary design may employ genetic aldaris in evolving opti-
mal strategies that satisfy given fitness functions, byaxpj large and sophisticated
search-space landscapes [26]. In general, however, we pmagach evolutionary de-
sign in two ways: via task-specific objectives or via gendmicinsic selection crite-
ria. The latter approach can be exemplifiedilfprmation-driven evolutionary design
which suggested to set intrinsic fitness functions accgrtinnformation-theoretic cri-
teria [32, 33, 19, 20, 21]. This essentially focuses on ojaiimg information transfer
within specific channels. An example of an intrinsic selmttpressure is the acqui-
sition of information from the environment: there is somédence that pushing the
information flow to the information-theoretic limit (i.emaximization of information
transfer in perception-action loops) can give rise to aatié behaviour, induce a nec-
essary structure in the system, and ultimately be resplenfsib adaptively reshaping
the system [18, 19, 20]. Other important selection pressapplicable to distributed
systems include stability of self-organizing hierarchj2s, 9]; efficiency of multi-
cellular communication topologies [30]; efficiency of lenotion and distributed ac-
tuation [32, 33, 37]. The identification of possible intim&tness criteria is also related
to the work of Deret al. on self-organization of agent behaviors from domain-irarar
principles, e.g., homeokinesis [6].



In summary, our main objective is to identify a selectionsgige on associative in-
formation transfer involved in memory recall, contribgtito the general methodology
of information-driven evolutionary design.

3 Information Transfer: Precision and Recall

Since our task is to identify a very generic principle, weat®to abstract away from
implementation details and consider instead an unconstlaileterministic function
f from two equally distributed random variablés and X to a random variablé”.
The variableK is intended to serve as a “key” or “cue” in accessing the mgmior
retrieving, as a result of the mappirigthe outcome or “readout”, i.e.,Y = f(K, X).

It is important to realize that while we interpréf, X andY as key, memory and
readout, we do not structurally constrain the variablesthadnapping: e.g., there is no
requirement that any locatianin memoryX is accessible by a unique kéye K, etc.

The first constraint that we impose is the criterion:

maximization of P = I(X; K|Y) , (1)

where(X; K|Y) is the conditional mutual information betweéh and K givenY'.
Before defining conditional mutual information, let us defithle mutual information
I(A; B) betweend and B:

ab) lo P(a,b)
B) =2, 2 Pla:b) 8 s @)

whereP(a) is the probability that! is in the state, andP(a, b) is the joint probability.
Mutual information/ (A; B) can be expressed in terms of entrofi&s), joint entropies
H(-,-), and conditional entropied (-|-):

I(A;B)=H(A)+ H(B)— H(A,B)=H(A)— H(A|B), (3)

where the entropies are defined as follows:

Z P(a) log P(a (4)
acA
= >3 P(a,b) log P(a,b) , (5)
ac€AbeB
H(A|B) = H(A,B) — H(B) (6)
When dealing with three-term entropies [25], one typicabfies the joint entropy

H(A,B,C)=->">""P(a,b,c) log P(a,b,c) (7)
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and uses relationships such as

H(B|A,C) = H(A,B,C) — H(A,C) 8)



A relationship like this is helpful in defining the condit@mmutual information:
I(X;K|Y) = H(X|Y) - H(X|K,Y) ©)

where both conditional entropies on the right-hand sidebmanbtained via equations
(4)-(8).

The criterion (1) maximizes the conditional mutual infotioa between key and
memory, given the readout. First of all, we need to clarifgtffalthoughkK and X
are independent and, therefore, mutual informatioX ; K) is zero, the conditional
mutual information/ (X; K|Y) may well be positive. This is analogous to the exam-
ple of a binary symmetric channel with inpit, noiseK, and outputt”, described by
MacKay [25] (we altered the variables names here to avoifusion): mutual informa-
tion I(X; K) = 0 since input and noise are independent, Ut ; K|Y) > 0, because
“once you see the output, the unknown input and the unknowserare intimately re-
lated!” [25]. Similarly, the criterion (1) is applied oncke readout is obtained, which
means that a possible association between memory and kégbasnade.

Secondly, we draw an analogy with well-known informatiotrieval metrics: pre-
cision and recall. Precision is a measure of usefulnesswandnessf the readout re-
trieved in response to a query, and is measured as a fradtitihre oelevant and re-
trieved items within the retrieved items (aiming at “nothibut the truth”). Recall is
a measure of relevance completenessf the readout, and is measured as a ratio of
the relevant and retrieved items over the relevant itenmi(a at “the whole truth”).
A probabilistic interpretation is possible as well [11]epision may be defined as the
conditional probability that an object is relevant givemttlt is returned by the sys-
tem, while the recall is the conditional probability thatedewant object is returned:
precision= P(relevanireturned, and recall= P(returnedrelevany.

Intuitively, the criterion (1) captures the potentiabf precision-driven information
transfer. To formalize this intuition, let us apply the ahaile for the mutual informa-
tion [25]:

I(X;Y,K)=I(X;Y)+ I(X; K|Y) (10)

where the left-hand side contains the mutual informatidwbenX and jointlyY and
K. This chain rule produces

P=I(X;K[Y)=I(X;Y,K)—I(X;Y). (11)

The alternative representation (11) can be interpretedlémnms: how much does a
key add to precision of the readout by associating with memdihe equation (11)
contrasts two information transfers: od¢,X’; Y'), does not use associativity, while the
other,I(X;Y, K), incorporates it. The difference between the two transfapgures,
we believe, the potential information gain in precisionoftrer useful representation of
the criterion (1) can be obtained in terms of entropies. il the relationships (9),
(8) and then (6) to the right-hand side of the criterion (Blgs

P=I(X;K|Y)=HX|Y)-H(X|K,Y) = HX|Y)-[H(X,Y,K)—H(K,Y)] =

[H(X,Y)— H(Y)| - HX,Y,K) + HK,Y)



A further reduction is possible for deterministic functiomvhereH (X, Y, K) is a con-
stant, making the criterion (1) equivalent to

maximization of P = H(X,Y) - H(Y)+ H(K,Y) . (12)
The measuré may, of course, be rewritten as follows:
P=HX|Y)+ H(K,Y)=H(X,Y)+ H(K|Y). (13)
At this stage we would like to introduce another criteriore ¥énsider
maximizationof R = I(V; K|X)=1(YV; X, K) - I(Y, X) . (14)

Intuitively, R measures how much a key is necesgarngentify the output of the map-
ping, given the memoryThe criterion (14) captures the potentidl of information
transfer involved in the memory recall, and aims to maxintiee difference between
associative and non-associative information transfeindJa relationship like (9), we
obtain

R=I1(Y;K|X) = H(Y|X) - HY|K,X) = [H(X,Y) - HX)] - HY|K, X)

For deterministic functions, the entropf(Y'| K, X) is zero, and the entropsf (X) is
a constant. Hence, maximization®fis equivalent to

maximization of R = H(X,Y) . (15)

It should be noted that sindé = f(K, X), the expression fok is dependent o .

The overall effectiveness of information retrieval is tgily defined as the har-
monic mean (the reciprocal of the arithmetic mean of theprecials) of recall and
precision — hence, we suggest the criterion:

2 2PR
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maximization of £ = (16)

fusing together the potential information gains in bothcgsi®n and recall.

In order to highlight different roles played by and X, we consider here scenar-
ios with varying sizesK | and|X |, interpreted in the context of several examples: (a)
catalog/book indexing and search; (b) pattern associatsimg a neural network; (c)
decoding of genotype (DNA) by proteins. The scenarios afelksvs:

(S1) |K|>|X]| and |X|~ |Y], (S2) |K|~|X[=~][Y],
(S5) |K| < |X]| and | X| =~ |Y|

where| o | is the cardinal number of the se{in our case, simply the number of its ele-
ments). In the example (a), a library catalogue is a datatx@#@ining records indexed
by the authors, titles, subjects, etc. The explicit “cuethie key, using which a set of
catalogue item&” C Y can be found as a result of a query. Typicallig,| > | X],
while |Y| = | X|: this is our first scenari@S; ). Similarly, a book can be indexed by as-
sociating its content (e.g., pages) with keywords. In taseq K| > | X| as well, since



there may be more keywords than pages, while~ |X| as the number of retrieved
pages may approach their total number. However, the seeftar pushes the scenario
(S1) to the extreme by restricting the number of possible keys,(a.limit on queries),
while the memory size is unchangdd | ~ |X|. This represents a more challenging
case with respect to the precision as the relevant itemsaadehto find.

The example (b) involves an artificial neural network, eagself-organizing map
(SOM) implementing associative memory, briefly discusseseiction 2. Each neuron
in memory (a network node) encodes a retrievable pattengei® | ~ | X|. Of course,
memory updates would lead to an increase in the overall nuoflreturned patterns,
highlighting the distinction between cumulative memorpaeity and memory size.
The SOM handles multiple cues/keys as partial or corrupattgms of data, associating
them with the memory, implying&’| > | X|. This also concurs with the first scenario
(S1). Again, restricting the number of possible keys while kaggthe memory size is
unchanged (the scenarif-)) would challenge the system in terms of the precision.

The third scenaridSs) may correspond to an auto-associative neural network such
as the Hopfield network [14] or a Sparse Distributed Memo8}.[A key is interpreted
simultaneously by all neurons which interact by updatingjrttveights until a stable
network state is reached: this attractor then represeatsdhwork output associated
with the key. In this casgX| > |Y| since there is only a limited number of attrac-
tor states supported by the network, whilé| < |X| due to high-dimensionality of
memory. Interestingly, restricting the memory (reducjiig) would challenge preci-
sion again, approaching the scendt# ) from another direction.

Finally, we consider the case (c) when a genotype (DNA) ided by proteins.
An individual DNA can be interpreted as associative memarthe sense that it con-
tainspotential informationrelevant to the niche occupied by the individual's species.
As pointed out by Adami [1], “If you do not know which systemwasequence refers
to, then whatever is on it cannot be considered informatitead, it is potential infor-
mation (a.k.a. entropy)”. Decoding a DNA involves a comaléd protein machinery
(the key), and may correspond to an associative recall.isntiodel, a replicated off-
spring is an associatively-recalled prototype. In the sextion we shall interpret all
three scenarios within this analogy.

4 Results

The experimental setup is very simple: we intend to satisfiyasiteria (1), (14), and
(16) by varying possible deterministic functiokis= f (K, X ) over finite size domains
K, X andY, for the scenario$5), (S2) and(Ss). In particular, we consider three
sets of integer§1,...,|K|}, {1,...,|X]|} and{1,...,|Y]}, and vary their sizeE]|,
|X| and |Y'| between experiments. For each experiment, we search ferndieistic
mappingsY = f(K,X) which maximizeP, or R, or £ — repeating the search for
each of these criteria. We used a simple genetic algorithf) (& evolve solutions to
the maximization problems. The initial population is gexted by random mappings
Y = fi(K,X), for a sufficiently large number of individual mappings,.e.g< @ <
1000. At each generation, the mappings are evaluated in ternigafriterion in point
(eitherP, orR, or £). We have chosen a generation gap replacement strateggntine



old population is sorted according to the fitness, and thel®§$ are chosen for direct
replication in the next generation, employing an elitidesgon mechanism), and the
multiple-point crossover. We also ensure that the muta#eults in a unique individual
by re-applying this operator if necessary. The GA typicalbnverged to theoretical
maxima for the criteria withi®000 generations.

4.1 Grid Contours

Visualizing evolved mappingg is not revealing, as can be observed from Figure 1.
We plot instead an analogue oRadimensional contour, but rather than simply using
contours, we connect, for a given heighte Y, all points(k,z) € K x X which
agree either ort or on z, producing a partial grid. For example, if there are entries
7= f(1,4), 7 = f(3,4), and7 = f(1,6), we connect pointél, 4) and(3,4) as they
represent the same memory= 4, as well as point$l,4) and(1, 6) sharing the same
key k = 1. Such agrid-contourcombines grids for all values gf € Y by “overlaying”
the grids for all valueg.

A random mapping (the zero hypothesis) has no discernahletste for all sce-
narios (e.g., Figure 2). Let us focus initially on the scémas;). A P-maximizing
mapping for this scenario is a structure with dominant taorial lines (Figure 3). Each
horizontal reflects the fact that in the evolved mapping,shime memory is recalled
if multiple different keys are associated with it. This, iretcontext of DNA decoding,
corresponds to conservation of DNA (memory) and its rolesgtrio possible decoding
errors (multiple keys), ensuring high precision./&xmaximizing mapping maintains
the horizontal lines but introduces some vertical lineg(Fe 4). Each vertical line
means that a key recalls the same content even if associdtedifferent memories.

In the context of DNA decoding, this may correspond to psegeizes within a DNA
(characterised by a lack of protein-coding functionalitgflundant code which does not
differentiate between offsprings and ensures high reltapiortantly, the effectiveness
criterion& maintains the horizontal lines (robust DNA) but eliminattes vertical lines
(no pseudo-genes), as shown in Figure 3. On the other hamimipation of £ does
the opposite, producing a grid-like structure, i.e., foemvassociatior{k,, 1) there
exists an associatiofks, x2) such that eithek,; = k, or z; = x5 (more precisely, the
mapping minimizing the criteria is given by a constgint

The scenaridS;) pushes the observed tendencies to their limit®-faximizing
mapping for this scenario is a structure with no lines (Fégby. There are no entries
which share either a key or memory — in other words, both kelyraemory are neces-
sary. Such an outcome illustrates the full precision of eissive memory (a perfectly
succinct DNA). AnR-maximizing mapping has some vertical lines (Figure 6),-sug
gesting that some pseudo-genes are possible even in theshigdtall case. This can
be interpreted as a tendency towards the dominance of measer recall, i.e., ro-
bustness of DNA at the expense of redundancy. However, fbetigbness criteriod
eliminates redundancy and results in a fully associativenorg structure (Figure 5),
where for every pair of a key and memory, fixing a Kewand varying memory: (or
vice versa) results in a different readout f(k, x).

The results for the scenar{®s) are not surprising: mappings maximiziiy R
and £ produce structures with only vertical lines. In the contekDNA decoding,



this would correspond to highly redundant and error-proN&Btructures. This model
would work for reproduction if different arrays collectlyestore information (as in an
SDM or Hopfield network), “retrieving” offspring as a comjitesresult of data fusion,
€.g. genetic cross-over.

Outcome Y

o kB N W & O o

Memory X

Fig. 1. An evolved mapping: scenar{®-).

4.2 Conjecture: a Model within The M odel

A mappingY = f(K, X) implementing fully associative memory in the scend1§g)
(Figure 5) can be interpreted in weak self-referential tergelf-referentiality has many
interpretations, ranging from programming data structeeself-referential structure
contains a pointer to a structure of the same type) to cagnitturoscience: the self is a
cognitive structure with special mnemonic abilities, ieado “the enhanced memora-
bility of material processed in relation to self” [12, 35]iggesting that a self-referential
memory — a memory about the self — is not ordinary. Accordim¢ghie well-known
interpretation of Hofstadter [13], a self-referentialt®ys can be characterised by emer-
gent behaviour and tangled hierarchies exhibiting Strdrags: “an interaction be-
tween levels in which the top level reaches back down towdrd$ottom level and
influences it, while at the same time being itself determibgdhe bottom level”. We
shall adopt a weaker interpretation of self-referentiahmey: the memory using a
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Fig. 2. Grid-contour of a random mapping: scenafi).

Memory X

Key K

Fig. 3. Grid-contour of @P-maximizing mapping, as well as @maximizing mapping: scenario
(S1).
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Fig. 4. Grid-contour of &R-maximizing mapping: scenari® ).

Memory X

Key K

Fig. 5. Grid-contour of a holographi®-maximizing mapping, as well as @&maximizing map-
ping: scenarid.S2). Its 3-dimensional counterpart is shown in Figure 1.



Memory X

Fig. 6. Grid-contour of &R-maximizing mapping: scenari®?).

model of itself. This limited a-model-within-the-modekw is not intended to preclude
emergence of tangled hierarchies, or references to theta@gself of the agent using
this memory.

We begin by observing that, on the one hand, for &y, , x2 (1 # x2), we have
f(k,z1) # f(k,z2), i.€., the readouts differ for the same key and a varying nmgmo
This means that every memory is sufficiently sensitive tows content/location, and
there is no redundant information in the associated keydifierence in the readout
is due to different memory. This observation can be forredlias follows. Let us in-
troduce ararray-readout||Yx|| = [f(k,z1),..., f(k,zx|)]. In other words||Y;|| is
an array of readoutg(k, =) produced by the mapping given a fixed keyk. Then the
observation that every memory is sufficiently sensitivetsoown content/location is
formally expressed by stating that each array-readdul is isomorphic to the mem-
ory spaceX (i.e.,||Yx|| cannot be made less informative than the sp&cer any array
[1,...,n], wheren = |K| = | X]).

On the other hand, for any, ki, ko (k1 # k2), we havef(ki,z) # f(k2, ),
i.e., the readouts differ for a varying key and identical nnemThis means that every
key is sufficiently informative to produce different reatupon association with the
same memory. In other words, every memory content is suitigiesensitive to each
key (as well as to its content/location), and therefore odrs information about all
possible keys. Formally, each array-readput || = [f(k1,7),..., f(k k|, )] for a
fixed memoryz is isomorphic to the key spack (i.e., ||Y.|| cannot be made less
informative than the spadk, or any array1, . ..,n], wheren = | K| = | X|).



Another interpretation is that the evolved mapping impletselLatin square—
ann x n table filled withn different symbols in such a way that each symbol occurs
exactly once in each row and exactly once in each column [24frticular, the evolved
mapping can be described by a multiplication table of a cyadbielian groufZ,, of order
n=|X|=|K[=[Y].

Furthermore, let us consider two array-readd|}fs, || and ||Y,,||. Each of these
array-readouts is as informative as any permuted atray . .., n — 1, n], wheren =
|K| = | X]|. Such permuted arrays can be interpretedresys of permuted keygiven
a fixed memory. Without a loss of generalityy., || may be represented by the array
[1,2,...,n—1,n], and the array2, 3, .. ., n, 1] may representY,, ||. Importantly, the
circular shift (in the “horizontal” direction across keysmtween the arrays ensures that,
given a fixed key, the outcomes retrieved from memoarieandx, would always be
different.

Each permuted array (i.e., each array-readout), however,mnemory modeper
se and we shall use this in closing the loop around our system f(X, K) with a
feedback

f'(kyx) = YDk, (17)

Here D(y) is a “diagonalization” function fronY” to X. It takes the readout =
f(k,z), uniquely maps it to an integer and returns a memory’ = xz;. When the
memoryz’ is identified, the feedback is set!(k, x) is the new associative memory
content, filled by the array-readojiit’, || of memoryz’. To re-iterate, the initial readout
f(k, x) is interpretedas the new memory’, producing the array-reado|lit’,||.

Let us consider a simple example, shown in Table 1. The asserimapping
f(k, x) at the first iteration may, in particular, be represented bgtan square« = 3),
i.e. a cyclic abelian group of ordér

k1 ko ks array-readout
1 1] 2] (3] [1,2,3]
x2 2] [3] [1] (2,3,1]
3 (3] (1] 2] 3:1,2]

Table 1. Mapping f (k, z) at the first iteration. Latin square (= 3), or a cyclic abelian group of
order3. The right-hand side column shows array-readdis ||.

In order to illustrate the feedbagk(k, z) = ||Yp(sk,2)) |, et us select, as an exam-
ple, the readouf (k2, z2) = [3], and use it in producing the memary = z3. Here we
capitalize on the fact that the readoytsontain integersy = [i], i.e.y € {[1],[2], [3]},
and use a simple diagonalization= D(y), such that functiorD returns the first inte-
ger of the first element of the array(the need for such recursion will become clear at
the second iteration). When the mematy= z; is identified, the array-readolit’,, ||



is obtained a$3, 1, 2], and the feedback is seft!(k2, z2) = [3, 1, 2]. Closing the loop
for all pairs(k, ) results in the system shown in Table 2.

k1 ko ks array-readout
T1 [1,2,3] [2,3,1] [3,1,2] 1,2,3],[2,3,1],[3,1, 2]
Ta [2,3,1] [3,1,2] [1,2,3] [12,3,1],[3,1,2],[1, 2, 3]
x3 [3,1,2] [1,2,3] (2,3,1] [[3,1,2],[1,2,3],2,3,1]]

Table 2. Mapping f('k, =) at the second iteration. The right-hand side column shows new array-
readoutd|Y;, ||.

The loop continues with new iterations: the functidi{y) always retrieves the
first integer in a nested readoyt= f(k, ), and uses it in pointing out the memory
x' = D(y) and the correspondinijyp(,||. The iterations preserve the cyclic group
characteristic of the system. In general, the functiomay be quite involved, e.qg. it
may introduce some noise into the feedback, resulting iremomplex scenarios. Im-
portantly, at every iteration of the closed loop, each newnory maintains a possible
model of itself. Moreover, the feedbagk(k,z) = [[Yp(ru..) |l iteratively “packs”
more and more structure into the memory nested at multiglkesc

An analogous arrangement (but in the “vertical” directi@mogs memories) can
be obtained with new readoutd’;| represented bypermuted memory arraysdt is
also possible to interleave iterations of permuted kegyarwvith iterations of permuted
memory-arrays.

The closed-loop system results in a Latin-square grid eonte the one produced
by the evolved fully associative mapping, i.e. both key anehtary are necessary
for retrieval. We believe that this closed-loop fully-assdive memory exhibits self-
referentiality and optimizes information transfer in terof precision and recall. The
self-referentiality emerges under the pressures impogeediricting the number of
queries and readouts to the memory size: the scefiésio If one of these pressures is
relaxed, self-referentiality is not needed and a memong dme have to encode infor-
mation about all possible keys: hence, the presence ofdmigklines in the optimal
structures for the scenari{@ ), or vertical lines for the scenari®s).

4.3 Connectivity within Optimal Associative Memory

The previous subsection presented a conjecture that eefefential memory (a model
within the model) may produce a grid contour identical to time exhibited by the
evolved memory structures. Given that the set-up adoptéusrwork is intentionally
generic, it is not possible to demonstrate an explicit mgraocchitecture for the system
X, K,Y, and verify “packing” of information at multiple scales. tther words, the
presented results may be related only to a snapshot (a stegd¢ion) of the closed
loop that we believe is necessary for a self-referential orgnNevertheless, we intend



to further analyse optimal mappings hoping to discern a multi-scale structure of
associative connections in terms of readouts.

In doing so, we performed a multi-objective optimizationfofith respect to preci-
sionI(X; K|Y')andrecall (Y; K|X) (as usualX andK were independently equidis-
tributed), finding the Pareto front of the mapping&here both are non-dominated. For
this purpose, we used the NSGA Il code [5] with the followiraggmeters:

Population size 40
Generations 300
ncz 20

Nm 30
Crossover probability 0.2
Mutation probability 0.002

The size of the chromosomes depends on the problem congidéadhe multi-objective
optimization, one could identify potential trade-off sagés at the Pareto front, but it
turns out actually that precision and recall are simultaisgooptimized. In particular,
the variance of the Pareto front is typically small (dewiat of less than 1% of the
absolute value the are the norm) for both objectives whicansehat the objectives
undergo little trade-off, if at all.

We consider memory sizéX'| = |K| = |Y| = 16 and|X| = |K| = |Y]| = 64.
As our aim is to better understand the evolved memory strecive study whether
different keysk, k' can be interpreted as pointing to overlapping or distincefimory
locations”. Since the syste, K, Y has no explicit memory architecture, it is now
our task to partially “reverse engineer” the evolved menstrycture — for a single
iteration of the closed loop.

For this purpose, consider for a moment the family of rand@mablesY; for
different (fixed!)k. Here,k andk’ are fixed values from the domain &f, and the joint
distribution of the variable}. andY} is to be interpreted according to the following
Bayesian network:

Y — X > Y,

i.e. their distribution is given by

Pk yi) = > p(rlz, k) p(x) plyw |2, &) (18)

wherep(yx |z, k) = 052,k (yx) With 6 being the Kronecker function, and likewise for
Yk

Now we can consider quantities such/a¥,; Yz ), the mutual information between
outputsY induced by switching on particular keys If this mutual information is
nonvanishing only fok = %/, it means that the keys are “incommensurable”, i.e. they
point to distinct memory locations which have no structurhwespect to each other.

2 . andn,, are parameters used in the SBX crossover implementation for binargsstGee
[4] for detalils.



In the optimization runs, this turns out to be the generiedasgeneral sizes ok, K
andY'.

However, for size§X| = |K| = |Y|, i.e. the scenaridSz), we do find some
overlapping between the readolts for different fixed keysk. To allow for a more
geometrical interpretation of the memory structure, iadtef the mutual information
I(Yy; Yy ), we consider the information-theoretic Crutchfield diserf“information
metric”) [3] to measure the relation between two kéysndk':

d(Ye, Yir) = H(Y|Yir) + H(Yir[Yi) - (19)

This allows us to create the distance matrix betweeh.alhe histogram of all assumed
distances gives a good indication of whether there is sotatar between different.
If the values are mainly concentrated at two values (foramse¢, one of theri), that
indicates incommensurable keys.

As Fig. 7 shows, the case where the sizesof, Y are equal provides a much
more interesting structure.

proportion ofk, k' pairs withd(Yy, Yy ) < d

0 0.2 0.4 0.6 0.8 1 12 1.4

distanced

Fig. 7. Distance histogram fofX| = |K| = |Y| = 16. The graph shown is the cumulative
distribution for distanced(Y%, Yy/), i.e. the integral of the probability of finding a particular
distanced = d(Y%, Yi). A histogram for incommensurable key structures (not shown) would
essentially find just one steep growth closé/te: 0 and one close to the maximal attained value
of d = dmax, corresponding to a probability distribution with two peaks, one at 0 andbfigx.

The current figure thus shows a case with more structure (see text).

This can be further investigated by projecting (embeddihg)distance matrix into
a Euclidean space, e.g. by finding those points in 2-dimeasigpace whose distance



matrix best matches the Crutchfield distance matrix of thiespg@&%, Yy ). Such an
embeddings shown for size 16 in Fig. 8, and for size 64 in Fig. 9. Figubesthows the
embedding (size 64) for a random mapping.

14 T T T T T T T

12 —

0.6 - _

02 r 4

0.2 1 1 1 1 1 1 1
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 14

Fig. 8. Projected Crutchfield distances@fy, Y;/) pairs (system size 16; evolved mapping). The
distances of the points are an approximation of the distances &f.the

The obvious difference between embeddings produced fawblwed and random
mappings is that the former is much more compact than ther|a&tly., the embedding
in Fig. 9 (evolved mapping) occupies half the area of the efding in Fig. 10 (random
mapping). Besides the approximation effort (measuredhdasstim of square distances
between the original distance matrix and the embeddedndistanatrix) indicates that
the embedding for the evolved mapping maintains distamdges &as well as the embed-
ding for the random mapping. These observations suppoeihectation that a degree
of commensurability, and hence associativity, in the exdlsystem is higher than such
a degree in a random mapping: the higher is the associatigtgasier it is to represent
the distances in 2D, while low associativity would requirersndimensions to maintain
the distances.

The feedback from readouts of a closed-loop system intoginernemory, given by
equation (17), would inject and preserve this associgtattone scale, while creating
associations on the new scale. We may conjecture that thinggearchies of a self-
referential memory require iterations of multiple memaoeydls, and more precisely
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Fig. 9. Projected Crutchfield distances@fx, Y;/) pairs (system size 64; evolved mapping). The
distances of the points are an approximation of the distances &f.the

iterations of self-similar scales (nested within more armmarrefined scales). However,
an investigation of the relationship between scale-ilavare, tangled hierarchies, and
the associative memory is outside the scope of this work.

At this stage we present another useful tool to study thevedainemory structures:
a distance-graph— the graph where two nodés. are connected if the distance is
below a given threshold. For a threshold of an intermediatees0.6 (see Fig. 7), one
obtains the graph in Fig. 11.

The graph shows quite an intricate structure of the memadity same nodes serving
as “hubs”, some nodes having quite a few connections and atiges having only
limited similarity to the rest, finally some isolated nod#ss important to note that
there are more “hubs” than nodes with low degrees, i.e. staldlition is opposite to the
one of a scale-free graph. There is not enough data, howtewestimate whether there
is a power law underlying the observed distribution, andtwkuld be the parameters
of such scale-invarianée

Nevertheless, we would like to point out that by varying tireshold of the distance-
graph, one may zoom into the multiple scales that may or mayagresent in the
memory structures under investigation. For example, thived optimal memory struc-

3 If confirmed, this scale-invariance would be driven by the tendencyve high associativity
(dominating hubs) at multiple scales.
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Fig. 11. Threshold-dependent (0.6) distance-grdphl. = | K| = |Y| = 16.



ture allows us to zoom into fine scales (by setting the thieldba and looking at very
strong associations), as well as into the coarse scale{tiygsthe threshold high and
looking at very weak associations). If by varying the thiddi{and scales) one obtains
different distance-graphs, then this would correspondutiiple scales and some hier-
archical memory structure. Otherwise (in the case of imdisishable distance-graphs),
one may conclude that the memory structure is flat. The la&tee may be observed for
either extreme: low connectivity of flat non-associativenmoeies, or high connectivity
(e.g., a complete graph) of non-hierarchical associatiemaories.

In summary, the extent of a revealed memory structure dependhe threshold.
At this point we hypothesize that under certain circumstarnee may find that optimal
memory structures might exhibit different levels of hiefscal or associative memory
structures. These preferred structurespaier to any particular architecture that is ei-
ther imposed by design (in engineering) or evolved (in lglpand merely driven by
specific information-theoretic requirements. Here, weeheallected a set of tools that
can help us in this quest.

5 Discussion and Conclusions

In this paper, we have investigated an information-driverigionary design of content-
addressable memory, and presented a set of tools (the dad#igria, grid-contours,
embeddings, threshold-dependent distance-graphs) teesuich design. The evolved
mappingsY’ = f(K, X) maximize precision, recall and effectiveness of the pdént
information transfer throughout associative memory.

It was conjectured (e.g., [28, 31]) that the degree of sflfrentiality employed by
a self-replicating multi-cellular organism is related fficéency of its self-inspection
and self-repair — and may be quantitatively measured inrdcdevolve more efficient
processes. This conjecture was extended in this work instefrmemory structures and
the information transfer. We would like to point out that temt-addressable memory
model is more generic than a self-referential memory maaied, the latter emerges
under additional selection pressures. We briefly sketchexkample of such a pressure,
provided by a closed loop around the system that packs irfomat multiple scales.

Continuing our analogy with DNA as an associative memorys interesting to
observe that real-life examples of DNA are not approachiegnaximum information
transfer, as evidenced by their non-perfect error recoaer significant redundancy
(pseudo-genes). Thus, in terms of self-replication, th&imam potential is not real-
ized — it would require higher precision and higher recallpginating in a perfectly-
associative memory. Interestingly, another extreme, tqecision and/or lower recall,
can be pointed out already. We believe that a suitable exaimghe self-replication
mechanism exhibited by mineral crystals in the absenceadbfical enzymes, as ad-
vocated by Cairns-Smith [2]: clay crystals can store infation as a pattern of inho-
mogeneities that are propagated from layer to layer, with derors; they can repro-
duce by random fragmentation; and they can express a vaidenhorphological phe-
notypes. Following this intuition, Schulman and Winfreeartly proposed a method
of error-correcting self-replication that works by simigrowth and fragmentation of
algorithmic DNA crystals [36]: “crystal growth extends theyers and copies the se-



quence of orientations, which may be considered its gemotypsplitting of a crystal
can yield multiple pieces, each containing at least one aiphe entire genotype”.
Such self-replication can be considered as non-assasig@mory recall, where a key
is not necessary at all, and neither the point of crystalnfragtation nor surrounding
environmental conditions are important. In other wordgrizaSmith model of crystal
self-replication is near the low-precision and low-reeaireme, while a self-referential
associative memory would implement the highest-effentigs case.

Adami advocated the view that “evolution increases the arnofiinformation a
population harbors about its niche” [1]. The informatidredretic criteria proposed in
this work may further formalize the notion of informatioratisfer involved in self-
replication, and enable bio-inspired design of more eiffeanemory structures.
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